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Abstract. A simple lattice model based on generalised diffusion equations and Gaussian statistics, aimed
at describing diffusive translational and rotational motions, is presented. It is shown that it allows the
generation of correlation functions relevant to spectroscopic techniques that are very similar to those
experimentally observed in a large variety of complex systems. For some ranges of values of the model
parameters, these functions, which can be expressed in closed mathematical forms, can be approximately
represented by the sum of two exponentials or by “stretched” exponentials.

PACS. 05.70.-a Thermodynamics – 61.20.-p Structure of liquids – 61.30.-v Liquid crystals

1 Introduction

Spectroscopic techniques (neutron and light scattering,
NMR...) when used in complex condensed systems such as
supercooled liquids, colloidal dispersions, polymers, gels,
fluids in restricted geometries generally reveal strongly
non-exponential behaviours for the relevant correlation
functions. This observation is often associated with non-
Arrhenius behaviour for the temperature dependence of
mass transport coefficients, mainly translational and ro-
tational diffusion coefficients and shear viscosity. A mi-
croscopic theory of these phenomena, based on first prin-
ciples, is still lacking, even in the simplest cases such as
the glass transition of pure systems composed of relatively
small molecules [1]. A number of phenomenological theo-
ries such as the mode coupling theory, and models includ-
ing lattice models have been developed to explain these
results (for a review, see for example [2,3]). However, these
approaches are limited only to the description of partic-
ular aspects of phenomena observed in complex systems.
Lattice models have long been used in statistical physics,
for example the “lattice gas” model (equivalent to the so-
called “Ising model”) for describing second order phase
transitions [4], or the “Flory-Huggins model” for describ-
ing static properties of polymers [5]. In these models, the
concept of lattice is rather abstract and does not necessar-
ily require the existence of a real translational regularity
as it is the case in true crystals. A true regular lattice may
however be assumed as in recent works related to orienta-
tional glass transition [6,7]. However, even in these cases,
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the model cannot be taken too literally since the elon-
gated objects that are located at the lattice points are
assumed as having no radial dimension. Nevertheless, all
these models turn out to be useful since they can describe
at least qualitatively different classes of phenomena. In
this paper, we propose an original approach for calculating
correlation functions for both translational and rotational
motions by using a simple “lattice-like” model based on
generalised diffusion equations and on Gaussian statistics.
We show that the proposed model (i) provides rather sim-
ple, closed form expressions for correlation functions (ii)
can account rather accurately for the observed behaviour
and (iii) may be used to reduce spectroscopic data to a
small number of model parameters. The values of these
parameters may then help to obtain new insights concern-
ing the system studied, for example by revealing (hidden)
characteristic distances or times, intermediate between
molecular and macroscopic. Since diffusion is a concept
associated with long time behaviour, the calculated cor-
relation functions are expected to be valid only for longer
times than a characteristic time tmin, below which the de-
scription breaks down. This model is currently applied in
our laboratory to the analysis of spectroscopic data from
various “complex” systems. As a first example of applica-
tion of this model, we have chosen a problem where the
current models are not completely satisfactory, namely the
simulation of NMR line shapes of amorphous polymers.
Detailed results concerning the fluorine NMR spectra of
polytetrafluoroethylene as a function of temperature will
be presented in a forthcoming publication [8].
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2 The model for translational motion

The system is assumed to be composed of a large num-
ber of (possibly rigid) objects submitted to thermal mo-
tion. The position of the mass centre of these objects, as
well as their orientation, fluctuate around equilibrium po-
sitions. At mechanical equilibrium, i.e. in the absence of
macroscopic motions (flow), it is assumed that the aver-
age positions form a regular lattice that is chosen cubic for
simplicity (this assumption can be removed, see Sect. 5).
Let a be the average distance between objects, which is
identified in this model with the cubic lattice spacing and
uα(t), α = x, y, z the components of the displacement
of an object at time t from its average position (a lattice
point). The assumptions concerning these latter quantities
are the following, for example for component x:

(i) they are independent random Gaussian variables
with zero average. Their (common) mean square av-
erages (or variance) are noted 〈u2

x〉. The probability
density function p(ux) is:

p(ux) =
1

[2π〈u2
x〉]1/2

exp
[
− u2

x

2〈u2
x〉

]
(1)

(ii) their time correlation functions are simple exponen-
tials characterised by a correlation time τ0. We have:

〈ux(t)ux(0)〉 = 〈u2
x〉 exp

(
− t

τ0

)
(2)

(iii) the random process is stationary, that is:

〈u2
x(t)〉 = 〈u2

x(t′)〉 ∀t, t′ (3)

(iv) all objects are dynamically equivalent.

With the variance 〈u2
x〉 and time τ0, a local self-diffusion

coefficient Dt can be defined along x as:

Dt =
〈u2
x〉
τ0
· (4)

3 Correlation and distribution functions

Let’s assume that the centre of mass of the objects can be
considered as incoherent scatterers for thermal neutrons.
In this case, owing to the equivalence, the normalised in-
termediate incoherent scattering law writes:

Is(Q, t) = 〈exp[iQ(ux(t)− ux(0))]〉 (5)

where Q is the neutron transfer momentum component
along x and the brackets mean an average over all possible
initial displacements ux(0) = ux0 at thermal equilibrium.
The random variables ux(t) being Gaussian, the variable
X = ux(t) − ux(0) is also Gaussian, which means that

its probability density is given by (1) with variance 〈X2〉.
Then it is easy to show that:

Is(Q, t) =
∫ ∞
−∞

exp(iQX)p(X)dX

= exp
[
−Q

2

2
〈[(ux(t)− ux(0))]2〉

]
. (6)

By expanding the square in the argument of the exponen-
tial, and by using by the stationary property, we obtain:

Is(Q, t) = exp
[
−Q2〈u2

x〉
(

1− exp
(
− t

τ0

))]
. (7)

This correlation function does not decay to zero at infinite
time. This is due to the fact that the motion is restricted
to a volume whose linear size is about the mean amplitude
fluctuation. The elastic incoherent structure factor (EISF)
of this unidimensional-restricted motion is the limit of this
function at infinite time:

Is(Q,∞) = |〈exp(iQux)〉|2 = exp[−Q2〈u2
x〉]. (8)

It can easily be verified that equation (7) can be calcu-
lated by:

Is(Q, t) =
∫ ∞
−∞

exp(−iQux0)p(ux0)dux0

×
∫ ∞
−∞

exp(iQux)Gs(ux, ux0, t)dux (9)

where the time dependent distribution function
Gs(ux, ux0, t) is given by:

Gs(ux, ux0, t) =
1[

4π〈u2
x〉
(

1− exp
(
− t

τ0

))]1/2

× exp

− (ux − ux0)2

4〈u2
x〉
[
1− exp

(
− t

τ0

)]
 .
(10)

One observes that Gs(ux, ux0, t) is a Gaussian function of
the variable ux − ux0 whose variance is:

2〈u2
x〉
[
1− exp

(
− t

τ0

)]
. (10a)

The function Gs is the solution of the following generalised
diffusion equation:

∂Gs(ux, ux0, t)
∂t

= D(t)
∂2G(ux, ux0, t)

(∂ux)2
(11)

where the time dependent diffusion coefficient D(t) is
given by:

D(t) =
〈u2
x〉
τ0

exp
(
− t

τ0

)
= Dt exp

(
− t

τ0

)
. (12)
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To summarise, these last four equations allow us to de-
scribe, in the framework of Gaussian statistics, the ran-
dom translational motion of a particle on a linear seg-
ment whose size is of the order of magnitude of the mean
amplitude of ux, and relation (7) is the corresponding in-
termediate incoherent scattering law for neutrons.

So far, the fact that an object can reach a neighbour-
ing site at distance a has not been taken particularly into
account. Since this neighbouring site is also an (equiva-
lent) equilibrium site, the object can remain in this site.
The possibility to reach efficiently this neighbouring site
depends crucially on the relative values of the mean fluctu-
ation amplitude and of the lattice spacing a. It is natural
to characterise the facility for an object to move efficiently
(i.e. to reach and stay) on a neighbouring site by the ra-
tio Rt of the probability densities of the variable ux at
distance a and at the origin 0. According to (1), we have:

Rt =
p(a)
p(0)

= exp
(
− a2

2〈u2
x〉

)
= exp

(
− a2

2Dtτ0

)
. (13)

The quantity Rt is close to 1 for large fluctuations com-
pared to the lattice spacing (presumably at sufficiently
high temperature), but due to the exponential depen-
dence, it may be very small for small fluctuations (presum-
ably at sufficiently low temperature). One thus expects a
significant change in the behaviour of Rt with tempera-
ture when the magnitude of the fluctuations crosses the
value of the lattice spacing.

Since τ0 has been used to define a local diffusion co-
efficient, τ0/Rt may be used in the same way to define a
long range (or macroscopic) diffusion coefficient DM. We
have:

DM = DtRt =
〈u2
x〉
τ0

exp
(
− a2

2〈u2
x〉

)
. (14)

As far as Rt is non zero, at sufficiently long time, the
object has escaped from its initial site and can be found
at any distance from its origin. This is the characteristic
feature of standard diffusion in an infinite medium. The
solution of the corresponding diffusion equation is a Gaus-
sian function of ux − ux0 whose variance is 2DMt.

Assuming that the two diffusive processes (local and
long range) are additive, the diffusion coefficient Dtot(t)
for the whole process is simply the sum of the two diffusion
coefficients. We have:

Dtot(t) = Dt exp
(
− t

τ0

)
+DM = Dt

[
exp

(
− t

τ0

)
+Rt

]
.

(15)

The time dependent distribution function for the displace-
ment of an object becomes:

Gs(ux, ux0, t) =
1[

4π〈u2
x〉
(

1− exp
(
− t

τ0

)
+Rt

t

τ0

)]1/2

× exp

− (ux − ux0)2

4〈u2
x〉
[
1− exp

(
− t

τ0

)
+Rt

t

τ0

]
 . (16)

This function is the solution of the following diffusion
equation:

∂Gs(ux, ux0, t)
∂t

=
[
〈u2
x〉
τ0

(
exp

(
− t

τ0

)
+Rt

)]
× ∂2Gs(ux, ux0, t)

(∂ux)2
· (17)

In this equation, one retrieves the fact that at sufficiently
long time, the local motion can be neglected, and one re-
covers the usual diffusion equation in an infinite medium,
characterised by long range diffusion coefficient DM.

The corresponding intermediate incoherent scattering
law is obtained from (9) by using (16). One obtains:

Is(Q, t) = exp
[
−Q2〈u2

x〉
(

1− exp
(
− t

τ0

)
+Rt

t

τ0

)]
.

(18)

This relation reduces to (7) in the absence of long range
motion (Rt = 0). One observes in (18) that the assump-
tion of additivity of the diffusion coefficients is equivalent
to the assumption that the local and long range diffusion
are independent processes, since the intermediate scatter-
ing law is the product of the two individual intermediate
scattering laws.

To summarise, the present model for motion of rigid
objects on a lattice provides general expressions for trans-
lational self-correlation functions relevant to spectroscopic
techniques. It is a three-parameter model. In condensed
matter, two of them can logically be considered as almost
fixed, namely the lattice spacing a and the correlation
time τ0. The third parameter 〈u2

x〉 is likely to be (possibly
strongly) temperature-dependent. In fact, these functions
are relevant to incoherent scattering only. For coherent
scattering, pair-correlation functions must be calculated.
This will be done in a forthcoming paper [11], but pre-
liminary results show that the general shapes of these
functions are qualitatively similar to the self-correlation
ones. If the normalised structure factor I(Q) of the sys-
tem can be represented by the product of a form factor
of the objects P (Q) and an interference term S(Q), the
so-called “incoherent approximation of coherent scatter-
ing” consists in replacing the actual variance 〈u2

x〉 by an
effective (coherent) variance given by 〈u2

x〉/S(Q). Equiv-
alently, the diffusion coefficient Dt should be replaced by
an effective diffusion coefficient given by a similar law if
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one assumes that τ0 is a constant. In fact, in the philoso-
phy of the present model, τ0 should probably be identified
with the average time required for a thermal fluctuation
to cross a typical (experimental) distance. With a typical
sample size of 1 mm, and a heat celerity (thermal diffu-
sivity divided by a molecular distance) of 105 cm/s (this
celerity is expected to be only weakly temperature depen-
dent in condensed matter), one obtains τ0 in the order of
magnitude of some microseconds. These results concern-
ing the incoherent approximation of coherent scattering
will be tested in detail in the framework of the present
model, extended to coherent scattering [11].

Introducing the scaling diffusion coefficient defined as
Dsc = a2/τ0, one can express the macroscopic diffu-
sion coefficient DM as a function of the reduced variable
s = 〈u2

x〉/a2:

DM

Dsc
= s exp

(
− 1

2s

)
. (19)

It can be noted that if the temperature dependence of 〈u2
x〉

(or s) is linear (this is probably a realistic situation at suffi-
ciently high temperature), then the exponential term cor-
responds to an Arrhenius-type dependence. We have DM

being proportional to T exp(−Ta/T ), where Ta is some
characteristic temperature (energy). Consequently, from
the Stokes-Einstein functional form relating diffusion co-
efficient to viscosity (valid in condensed fluid media under
standard conditions), one finds that, in this high temper-
ature limit, the temperature dependence of the viscosity
is just exp(Ta/T ).

Since all sites are occupied by rigid (impenetrable)
objects, a particular object can move on a neighbouring
site only if the object on this site has also moved away.
The present model is thus expected to apply in systems
where the translational motions of neighbouring objects
are (strongly) coupled. In other words, the model implic-
itly assumes that the motions are essentially collective,
as it is the case in condensed matter where the density is
near close-packing. The collective aspect thus suggests the
need of introducing the notion of translational coherence
length ξ, defined as the mean distance beyond which the
motions of objects are no more coupled. This distance ξ,
which is expected to increase when the width of the (trans-
lational) “thermal cloud” 〈u2

x〉 decreases, is irrelevant for
calculating incoherent scattering laws, i.e. self-correlation
functions, but is of primary importance for calculating co-
herent scattering laws, i.e. the pair-correlation functions
Ip(Q, t), and the structure factor I(Q) = Ip(Q, 0) [11].

4 Extension of the model to rotational motion

4.1 Motion on a circle

A similar kind of model can be developed for rotational
motion among N equidistant sites on a circle. One partic-
ular object, located at one lattice point of the previous
(translational) lattice is pictured as an uniaxial object

whose orientation can fluctuate around an axis perpen-
dicular to it. This rotation axis is fixed in the laboratory
frame. The orientation of the object axis in the rotation
plane is described by an angle ϕ, considered as a random
variable. The circle with its N sites now represents the
“lattice” for the rotational motion. The angle α = 2π/N
plays the role of a rotational lattice “distance”. Let’s con-
sider first the motion around one particular site, located
by convention at ϕ = 0, in the absence of the other sites.
The symmetry of the problem implies that all relevant
functions have periodicity 2π, and can thus be expanded
in Fourier series. We start the discussion of this prob-
lem from the diffusion equation. By analogy with (11, 12),
we assume that the time dependent distribution function
Gs of angle ϕ satisfies the following generalised diffusion
equation:

∂Gs(ϕ,ϕ0, t)
∂t

= Dr exp
(
− t

τ0

)
∂2G(ϕ,ϕ0, t)

(∂ϕ)2
(20)

where Dr is a rotational diffusion coefficient and τ0 a
characteristic time. The solution of this equation can be
written:

G(ϕ,ϕ0, t) =
1

2π

×
∞∑

n=−∞
exp

[
−n2Drτ0

[
1− exp

(
− t

τ0

)]]
exp[in(ϕ−ϕ0)].

(21)

The distribution at infinite time is:

G(ϕ,ϕ0,∞) =
1

2π

∞∑
n=−∞

exp[−n2Drτ0] exp[in(ϕ− ϕ0)].

(22)

The equilibrium distribution function p(ϕ0) can also be
developed in Fourier series. We write

p(ϕ0) =
1

2π

∞∑
n=−∞

Sn exp(inϕ0) (23)

where the coefficients Sn can be defined as an infinite num-
ber of local orientational order parameters.

By calculating in two different ways the average value
of exp[im(ϕ−ϕ0)] at infinite time, either using (22, 23), or
directly by assuming that the angles at zero and infinite
times are not coupled and have the same distribution p
(this calculation is valid only because both this function
and G(ϕ,ϕ0, t) depend on (ϕ−ϕ0) only, and not on ϕ and
ϕ0 separately), one can easily show that:

Sn = 〈exp(inϕ)〉 = exp
[
−n

2Drτ0
2

]
· (24)

The equilibrium distribution can thus be written:

p(ϕ0) =
1

2π

∞∑
n=−∞

exp
[
−n

2Drτ0
2

]
exp(inϕ0). (25)
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Finally, since any function of ϕ with period 2π can
be expanded in series of exp(inϕ), it is sufficient
to know the inter-correlation functions Cm,n(t) =
〈exp[imϕ(t) exp(−inϕ0)〉 to be able to calculate any cor-
relation function. Using the above relations, we obtain:

Cm,n(t) = exp
[
−m2Drτ0

(
1− exp

(
− t

τ0

))]
× exp

[
− (m− n)2Drτ0

2

]
. (26)

Now we show that, for practical purposes, this random
process on a circle is isomorphous to the Gaussian ran-
dom process for translation on a straight line described
previously, despite the fact that in the first case, it in-
volves imaginary exponential functions of the variable in-
stead of Gaussian functions. In fact, the two models have
different topologies, since in the translational case, the
variable is allowed to explore the interval −∞ to∞, while
in the rotational case, it is restricted to a 2π interval.
Since the moving particle can make physically many turns
on the circle, the probability to make an angle ϕ at time t
is not the same as the probability to make ϕ+nπ. Thus, in
principle, the angular interval should also range between
−∞ and ∞. In order to connect the periodic description
with the more physical non-periodic one, one must forgets
the strict 2π symmetry. In this case, the above distribu-
tion functions should be considered as Fourier integrals
rather than Fourier series. This means that the sums over
n in (21, 23, 25) should be replaced by integrals over n,
now considered as a continuous variable. For example, for
the time dependent distribution function, we have:

G(ϕ,ϕ0, t) =
∫ ∞
−∞

exp
[
−n2Drτ0

[
1− exp

(
− t

τ0

)]]
× exp[in(ϕ− ϕ0)]dn. (27)

The integral can be performed exactly, and one obtains
the following Gaussian function:

G(ϕ,ϕ0, t) =
1[

4πDrτ0

[
1− exp

(
− t

τ0

)]]1/2

× exp

− (ϕ− ϕ0)2

4Drτ0

[
1− exp

(
− t

τ0

)]
 . (28)

Similarly, we have

p(ϕ0) =
1

[2πDrτ0]1/2
exp

[
− ϕ2

0

2Drτ0

]
. (29)

From these relations, one can define the angular variance
〈ϕ2〉 for this Gaussian process by:

〈ϕ2〉 = Drτ0. (30)

Note that, since 〈ϕ2n+1〉 = 0, the expansion in series of
the two members of (24) around 0, implies relation (30).

By analogy with the translational case (relation (2)),
relation (30) suggests that the characteristic time τ0
should be identified with the correlation time of the ran-
dom variable ϕ, the corresponding correlation function be-
ing exponential.

One thus recovers formally all the results of the unidi-
mensional translational Gaussian model. Indeed, the cal-
culation shows that one obtains exactly the same expres-
sions for the order parameters and for the correlation
functions by using the Gaussian functions, where the an-
gle ϕ is allowed to vary between −∞ and∞, than with the
periodic functions where the angle ϕ is restricted to a 2π
interval. Thus, for practical purposes, that is for calculat-
ing measurable quantities, the two formalisms are strictly
equivalent since order parameters and correlation func-
tions are the only quantities that can be determined from
experiments.

It is interesting to mention that, although equivalent
for experimental predictions, the two formalisms are not
identical. It can indeed be verified that the numerical val-
ues of G(ϕ,ϕ0, t) or p(ϕ0) are not the same when they
are calculated either by (21, 25) or by (28, 29). This is
easily understood since in the first case, the probabilities
are summed over an infinite number of angles differing by
an integer number of 2π, while in the second case, only
one value is considered.

The problem is now to decide which formalism should
be used for extending this single site model to the many
site model (neighbouring sites separated by angle α =
2π/N) since the calculation of Rr, which is the ana-
logue of Rt in the translational model, relation (13), in-
volves the probability density p(ϕ0) through the relation
Rr = p(α)/p(0). It is clear that the Gaussian formalism
should be used since the physics changes when the par-
ticle reaches a neighbouring site, and such a site is de-
fined by a single value of the angle α. The angles α+mπ
with m integer positive or negative correspond to different
sites in the Gaussian formalism, and to the same site in
the periodic formalism. Consequently, in order to calcu-
late the factor Rr, relation (29) must be used rather than
relation (25). One thus obtains an expression very similar
to (13), namely:

Rr = exp
(
− α2

2〈ϕ2〉

)
= exp

(
− α2

2Drτ0

)
. (31)

With this expression, the expression for the inter-
correlation functions, formally identical to those of the
unidimensional translational case may finally be written:

Cm,n(t) = exp
[
−m2〈ϕ2〉

[
1− exp

(
− t

τ0

)
+Rr

t

τ0

]]
× exp

[
− (m− n)2Drτ0

2

]
. (32)

In fact, this is not the correct expression since the ori-
gin has been chosen at one particular site. Since all sites
are equivalent, one must average over all of them. Calling
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ϕp = α(p−1) = 2π(p−1)/N the angular position of site p
with respect to site 1 taken as origin on the circle, all the
above expressions are valid when one replaces the current
angle ϕ by ϕ−ϕp and the initial angle ϕ0 by ϕ0−ϕp, and
one averages over p. Since exp iϕ = exp iϕp exp i(ϕ− ϕp),
the macroscopic inter-correlation function is written:

Cm,n(t) =
1
N

N∑
p=1

exp[i(m− n)ϕp] exp

[
−m2〈ϕ2〉

×
[
1− exp

(
− t

τ0

)
+Rr

t

τ0

]]
exp

[
− (m− n)2Drτ0

2

]
.

(32a)

One observes that the self-(i.e. m = n) correlation func-
tions are independent of the particular values of the ϕps,
that is to say of the origin chosen. As in the transla-
tional case, they are independent from the number of
(rotational) sites, and they depend only on the distance
between two neighbouring sites through the value of Rr.
Physically speaking, the origin of the orientational order
comes from the presence of an (identical) object located on
a neighbouring (translational site). Because of the close-
packing, one object can rotate only if the neighbouring
objects have also rotated with the same angle. As in the
translational case, the many site rotational model also im-
plies a coupling of the rotations of neighbouring objects
and consequently requires the introduction of the notion
of (rotational) coherence length, which is expected to in-
crease as the width of the (rotational) “thermal cloud”
〈ϕ2〉 decreases (see the previous discussion on this aspect
for translational motion).

In the many site model, one can define “long (angular)
range” orientational order parameters Sn,M (index M for
“macroscopic”, as in the translational case) by averaging
〈exp(inϕ)〉 over all rotational sites taking into account the
fact that Sn = 〈exp[in(ϕ− ϕp)]〉. We obtain:

Sn,M = Sn
1
N

N∑
p=1

exp
2πi(p− 1)

N
· (32b)

For the two site model (N = 2), one finds that all odd Sn,M
order parameters are zero whereas all the even ones are
equal to the corresponding local even order parameters.
This result means that, for n even, jumps among the two
sites do not affect the value of the function exp(inϕ). In
other words, jumps among sites are irrelevant so that the
even correlation functions do not decay to zero at infinite
time. Consequently, in the expression of the corresponding
macroscopic correlation function, the coefficient Rr should
be omitted.

4.2 Rotational motion in an uniaxial medium

The problem is similar to the previous one, except that the
rotation axis is no more fixed in the laboratory frame, but
have any direction in the plane perpendicular to the object

axis. The rotational problem is now a bi-dimensional one,
since the orientation of the object axis on the unit sphere
is described by two angles symbolised by Ω, namely polar
angle θ and azimuthal angle φ. The number of sites N on
the sphere may be arbitrary, provided it forms a regular
mapping. The simplest problem is when N is restricted to
2 with the two sites located at the north and south poles,
defined by θ = 0 and π (the values of φ are irrelevant
there). In this case, the model may now be adequate, for
example, to describe orientational fluctuations in uniaxial
phases.

We follow the method used for the one-dimensional
case. We solve first the problem with one site located at
the north pole. The diffusion equation is similar, except
that the second member of the equation is the angular
part of the Laplacian ∆, and also that Dr is now a two-
dimensional rotational diffusion coefficient. We have:

∂Gs(Ω,Ω0, t)
∂t

= Dr exp
(
− t

τ0

)
∆Ω[Gs(Ω,Ω0, t)]. (33)

The solution of this equation can be written:

Gs(Ω,Ω0, t) =
1

4π

∞∑
l=0

exp
[
−l(l+1)Drτ0

[
1−exp

(
− t

τ0

)]]
×

l∑
m=−l

Y lm(θ, ϕ)Y l∗m (θ0, ϕ0), (34)

where the Y lm are the spherical harmonics, and the sub-
script ∗ symbolises the complex conjugate. The distribu-
tion at infinite time is:

Gs(Ω,Ω0,∞) =
1

4π

∞∑
l=0

exp[−l(l+ 1)Drτ0]

×
l∑

m=−l
Y lm(θ, ϕ)Y l∗m (θ0, ϕ0). (35)

It is also convenient to introduce the Legendre polynomi-
als Pl defined by:

Pl(cos θ) =
(

4π
2l+ 1

)1/2

Y l0 (θ, φ). (36)

If γ is the angle between the directions defined by Ω and
Ω0, we have the identity:

Pl(cos γ) =
4π

2l+ 1

l∑
m=−l

Y lm(θ, ϕ)Y l∗m (θ0, ϕ0). (37)

This relation shows that Gs(Ω,Ω0, t) depends only on the
angle γ, and not on Ω and Ω0 separately. The equilibrium
distribution function p(Ω0) having uniaxial symmetry, it
can be developed in series of Legendre polynomials. We
write:

p(Ω0) =
1

4π

∞∑
l=0

(2l + 1)SlPl(cos θ0) (38)
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where the coefficients Sl = 〈Pl(cos θ0)〉 =
∫
Pl(cos θ0) ×

p(Ω0)dΩ0 can be considered as an infinite number of local
orientational order parameters.

As for the one-dimensional case, by calculating in two
different ways the average value of Pl(cos γ) at infinite
time, either by using (35), or directly by using (37) as-
suming that the solid angles at zero and infinite times are
not coupled and have the same distribution p(Ω0), it can
be shown that:

Sl = 〈Pl(cos(θ0))〉 = exp
[
− l(l+ 1)Drτ0

2

]
. (39)

Note that the demonstration of this result is much less
straightforward than in the one-dimensional case, and re-
quires the use of explicit forms of the quantities Cl,l

′

m,m′(0)
defined below. The equilibrium distribution can thus be
written:

p(Ω0) =
1

4π

∞∑
l=0

(2l + 1) exp
[
− l(l+ 1)Drτ0

2

]
Pl(cos(θ0)).

(40)

For high orientational order, that is for θ0 restricted to
small values around 0, or equivalently, small values of
Drτ0, one can expand the two members of (39) and limit
them to the first two terms. Since the development of Pl
is Pl(cos θ) = 1 − l(l + 1)θ2/4, it is natural to define the
mean square fluctuation of angle θ by:

〈θ2〉 = 2Drτ0. (41)

The factor 2 in this expression, which does not appear in
the one-dimensional case, relation (30), comes from the
fact that diffusion occurs here in two dimensions (on the
surface of a sphere). As in the one-dimensional case, this
relation suggests that τ0 should be identified with the cor-
relation time of the random variable θ, the correlation
function being exponential.

Finally, since any function of Ω can be expanded in se-
ries of spherical harmonics, for practical purposes, it is suf-
ficient to know the inter-correlation functions Cl,l

′

m,m′(t) =
〈Y lm(Ω(t))Y l′∗

m′ (Ω0)〉 to be able to calculate any correlation
function. Using the above relations, it is easy to show that
we have:

Cl,l
′

m,m′(t) = Cl,l
′

m,m(0)δm,m′

× exp
[
−l(l+ 1)

2
〈θ2〉

(
1− exp

(
− t

τ0

))]
(42)

with

Cl,l
′

m,m(0) =
∫
Y lm(Ω0)Y l

′∗
m (Ω0)p(Ω0)dΩ0. (43)

We give below the values of the coefficients Cl,lm,m(0) for
the self-correlation functions of the spherical harmonics of
order 0, 1 and 2, which are relevant to most spectroscopic

techniques:

C0,0
0,0 (0) =

1
4π

(44)

C1,1
0,0 (0) =

1
4π

(1 + 2S2) (45)

C1,1
1,1 (0) = C1,1

−1,−1(0) =
1

4π
(1− S2) (46)

C2,2
0,0 (0) =

1
4π

7 + 10S2 + 18S4

7
(47)

C2,2
1,1 (0) = C2,2

−1,−1(0) =
1

4π
7 + 5S2 − 12S4

7
(48)

C2,2
2,2 (0) = C2,2

−2,−2(0) =
1

4π
7− 10S2 + 3S4

7
· (49)

Finally, one must calculate the factor Rr to take into ac-
count the jump on the neighbouring site, here the south
pole. As for the one-dimensional case, the periodic func-
tion p(Ω0) given by equation (40) cannot be used in this
calculation, because this function takes into account an
infinite number of π jumps. It is not clear whether this
periodic model can be transformed into a two-dimensional
non-periodic model since the spherical harmonics are, in
principle, not defined when l and m are real numbers.
In other words, the sums over l and m cannot a priori
be transformed into integrals, contrarily to Fourier series
which can be transformed into Fourier integrals. However,
the spherical harmonics can be expressed in terms of Leg-
endre functions Pml (cos θ), themselves related to hyperge-
ometric functions [9], which can be defined for any real
or complex value of l and m, so that there is some hope
that the present one site rotational model on a sphere
may be related to a two-dimensional (Gaussian?) model
where angles θ and φ are allowed to vary between −∞
and ∞. This problem will not be explored here. In order
to guess the form of the factor Rr for our problem, we
shall assume that an argument similar to that used in the
previous unidimensional model holds, and that we have,
for the two-site model:

Rr = exp
(
− π2

2〈θ2〉

)
= exp

(
− π2

4Drτ0

)
· (50)

With this expression, one finally obtains the following ex-
pression for the inter-correlation functions:

Cl,l
′

m,m′(t) = Cl,l
′

m,m(0)δm,m′

× exp
[
− l(l+ 1)

2
〈θ2〉

(
1− exp

(
− t

τ0

)
+Rr

t

τ0

)]
. (51)

As for the one-dimensional case, the self-correlation func-
tions are independent of the number of sites and only de-
pend on the distance between neighbouring sites through
the value of Rr. The expressions for the inter-correlation
functions, which are expected to depend explicitly on
the number and on the relative locations of the various
sites, are more complex and will not be given here. As
for the one-dimensional case, the present many-site, bi-
dimensional model implies that the orientational motions
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are essentially collective, requiring the introduction of the
notion of orientational coherence length ξ. Further, the
model also implies coupling with translational motions
since it is impossible to rotate simultaneously two ad-
jacent thick, impenetrable objects, with their centres of
mass being fixed in the laboratory frame. Thus, collective
rotational motions of anisotropic objects in dense media
necessarily imply a coupling with translational motions.

Concerning the “long (angular) range” order parame-
ters Sl,M one must average over the two sites. Since the
north and south poles can be exchanged by replacing (θ, φ)
by (π− θ, φ+π) and that Pl[cos(π− θ)] = (−1)lPl(cos θ),
it follows that all odd macroscopic order parameters are
zero whereas all even ones are equal to the correspond-
ing even local order parameters. For the same reasons as
in the one-dimensional case, the coefficient Rr should be
omitted in the expression of the macroscopic correlation
functions with l even.

Of particular interest is the case l = l′ = 2 relevant to
light scattering, NMR and other spectroscopic techniques
associated with second rank tensors. Since l is even, we
have:

C2,2
m,m′(t) = C2,2

m,m(0)δm,m′

× exp
[
−3〈θ2〉

(
1− exp

(
− t

τ0

))]
. (52a)

On the contrary, for the case l = l′ = 1 relevant to dielec-
tric or infrared absorption spectroscopies, the factor Rr

should be kept. We have:

C1,1
m,m′(t) = C1,1

m,m(0)δm,m′

× exp
[
−〈θ2〉

(
1− exp

(
− t

τ0

)
+Rr

t

τ0

)]
. (52b)

5 Typical shapes of spectroscopic correlation
functions

The above calculations show that all correlation functions
have the same functional form. The following two param-
eter (F and G) function Y (t, τ0, F,G):

Y (t, τ0, F,G) = exp
[
−F

[
1− exp

(
− t

τ0

)
+G

t

τ0

]]
(53)

allows the generation of all possible shapes as a function
of the reduced variable x = t/τ0.

Let’s discuss first the translational problem. In this
case, two situations must be considered:

(i) large F values mean large Q values (typical for neu-
tron scattering) and/or large fluctuation amplitudes
(compared to 1/Q), whereas small F values of are
typical for light scattering, whatever the amplitude
(because Q is generally very small in practice).

Fig. 1. Equation (53) for τ0 = 10−6 s, G = 0.5 and F = 10,
1, 0.1, 10−3, 10−5 (from left to right).

(ii) values of G close to 1 means large (now compared to
the lattice spacing a) fluctuation amplitudes, whereas
G � 1 means small fluctuation amplitudes. Of par-
ticular interest is the situation around R = 1/e (i.e.
when fluctuation amplitudes are comparable to the
lattice spacing) since one expects for the functions an
important behaviour change when this value is crossed
(for example by varying the temperature).

For the rotational problem, the situation is similar, except
that there is no Q dependence so that:

(i) large F values now means large angular fluctuations
compared to about 1 radian, and

(ii) large G values means that the fluctuation amplitudes
are large compared to the angular distance α between
sites. Note that this last situation is not relevant for
the two site models when n or l are even, because
G = 0.

Figures 1–4 show equation (53) for G = 0.5, 0.1, 10−2,
10−4 respectively, and several values of F between 0.5 and
10−5, over twelve decades in time. To be closer to typical
experimental values, we have somewhat arbitrarily chosen
τ0 = 10−6 s, so that t varies from 10−9 to 103 s. It is ob-
served that all curves are qualitatively very close to typical
functions that are observed in real experiments with com-
plex systems, generally showing up a plateau when G is
small. These functions correspond to either translational
or rotational motions. For light scattering with VV po-
larisation, or unpolarised, the real spectra may be more
complex, with two plateaux corresponding to a superim-
position of translational and rotational motions [2,3].

The overall shapes of these curves are never purely ex-
ponential. However, they can be represented by pure expo-
nentials at long (compared to τ0/G) times. It is interesting
to note that in the range around t = τ0, curves for G be-
tween 0.5 and 0.1 can often be satisfactorily represented
by a “stretched exponential” of the form exp[−(t/τ0)β ]
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Fig. 2. Idem Figure 1 for G = 0.1.

Fig. 3. Idem Figure 1 for G = 10−2.

Fig. 4. Idem Figure 1 for G = 10−4.

(so-called KWW law) with 0.5 < β < 1. Such function
is extensively used in analysis of real data [2,3]. For very
small values of G, case where a well-defined plateau ex-
ists, the full curve can often be approximated by a sum
of two exponentials. In practice, it is sometimes observed
that the terminal part of the correlation function (after
the plateau) can also be represented by a “stretched” ex-
ponential. To explain this behaviour in the framework of
the model, one can invoke some anisotropy of the mo-
tions. In other words, the amplitudes of the fluctuations
are not the same in all directions of space, which means
that some translational order exists in the system. An
isotropic macroscopic sample must then be pictured as
a “powder” of rather ordered domains. This implies that
the lattice cannot be anymore considered as cubic, so that
three different lattice distances along the three axes must
be a priori considered. Obtaining the theoretical correla-
tion function associated with the macroscopic sample re-
quires a “powder” average on this function. Let’s assume
for simplicity that the diffusion in the domains (and con-
sequently the domains) have uniaxial symmetry, and let’s
the two corresponding diffusion coefficients be D1 (paral-
lel to the symmetry axis) and D2 (perpendicular to it).
In this case, two lattice spacings a1 and a2 must be intro-
duced. Let Θ be the angle between the symmetry axis and
the momentum transfer vector Q. The diffusion coefficient
along Q now depends on Θ. We have:

Dθ = D1 cos2Θ +D2 sin2Θ. (54)

The general form for the correlation functions in the
presence of such anisotropic motions can be represented
by (53) with F replaced by F = F1 cos2Θ+F2 sin2Θ, and
averaged over Θ. Assuming that the powder is isotropic,
and that the mean square fluctuations (or equivalently the
diffusion coefficients) along directions 1 and 2 are propor-
tional to the square of the corresponding lattice spacings
a1 and a2, so that G is independent of Θ, we obtain:

Y ′(t, τ0, F1, F2, G) =
1
2

∫ π

0

exp
[
− (F1 cos2 Θ+ F2 sin2Θ)

×
[
1− exp

(
− t

τ0

)
+G

t

τ0

] ]
sinΘdΘ. (55)

Such a function can be calculated, for example with the
MATHEMATICA software. A closed form expression ex-
ists, involving the modified error function erfi (erfi(z) =
erf(iz)/i). Figures 5 and 6 show results of the calculation
as a function of F2 varying between 1 and 0, for F1 = 1
and G = 1 (no plateau) (Fig. 5) and G = 10−5 (well-
defined plateau) (Fig. 6). Decreasing values of F2 from 1
to 0 means that the diffusion changes from isotropic to
unidimensional. It is seen from Figure 5 (no plateau) that
the effect of reducing the dimensionality of diffusion slows
down the decrease of the function at long times. It turns
out that all these curves can be satisfactorily represented
by KWW laws with an exponent β varying from 0.9 (for
F2 = 1) to about 0.6 (for F2 ≈ 0.2). For F2 between 0.2
and 0, the fit using KWW law is not so good. Figure 6
shows that the situation is more complex when a plateau
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Fig. 5. Equation (55) for τ0 = 10−6 s, G = 1, F1 = 1 and
F2 = 1, 0.8, 0.6, 0.4, 0.2, 0 (from left to right).

Fig. 6. Idem Figure 5 for G = 10−5.

exists. When F2 decreases, the level of the plateau in-
creases and the terminal exponential stretches more and
more, as found in the previous case. The terminal part
of the function can also be represented satisfactorily by
KWW laws with similar values of the exponent β. The
case F2 = 1 and F1 varying from 1 to 0 has also been
considered (diffusion changing from isotropic to planar).
Effects are similar to the previous case, but variations are
smaller, as expected (Figs. 7 and 8).

One of the main results of this model is to show
that plateaux and stretched exponentials are ubiquitous
in spectroscopic correlation functions, but the theoretical
expressions are not the KWW law. Here, this law only ap-
pears as a good empirical representation of parts of these
functions.

Finally, it must be said that the above discussion
about anisotropic diffusion implicitly concerned transla-
tional motion. For anisotropic rotational motion in three

Fig. 7. Equation (55) for τ0 = 10−6 s, G = 1, F2 = 1 and
F1 = 1, 0.8, 0.6, 0.4, 0.2, 0 (from left to right).

Fig. 8. Idem Figure 7 for G = 10−5.

dimensions, the arguments are probably more complex,
but since the rotational diffusion coefficients around three
perpendicular axes attached to a non-spherical object,
form a second rank tensor, it is likely that the net effects of
anisotropy on the shape of rotational correlation functions
are very similar to those predicted for translation.

Last but not least, it may be useful to explain why
a value of tmin = 10−9 s rather than 0 was chosen for
the minimum time in the figures. The reason is that all
the correlation functions predicted by the model are pure
exponentials at sufficiently small times and this is incom-
patible with the fact that they must have a horizontal
slope at t = 0 in order to fulfil the stationary condition of
random processes. This is in agreement with the general
statement that a random motion can be considered as dif-
fusive only at sufficiently large times. In real systems com-
posed of polyatomic objects, internal degrees of freedom
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such as bond vibrations, librations ... exist. Such motions
are usually described in terms of more or less damped
oscillations whose characteristic times are typically in the
range 10−13−10−11 s (“infrared” and “far-infrared” time
scales). Further, if the objects are assumed to be small
with mass m and/or inertial momentum I, the behaviour
is ballistic (correlation functions are then parabolic func-
tions of time) for times shorter than (~Q2/2m)−1 for
translational motion or (~/2I)−1 for rotational motion.
Typical values of these latter times for small molecules
are in the same range as before. In other words, cor-
relation functions associated with these short time mo-
tions exhibit oscillatory and/or parabolic behaviour until
times about five to ten times these values, that is typ-
ically 10−12−10−10 s. In order to introduce these short
time motions in the description, one must simply multi-
ply the corresponding correlation function with that of
the present model (assuming that the two kinds of mo-
tions are decoupled). In this way, it would be possible to
reproduce experimental data until time as short as, say
10−13 s. An example of decomposition of experimental
correlation functions into short time (molecular) motions
and long time (diffusive) motions is given in [10] in the
case of glass former ortho-terphenyl (OTP).

6 Conclusion

To summarise, a simple phenomenological model of dif-
fusion on a lattice based on generalised diffusion equa-
tions and Gaussian statistics has been presented. It al-
lows to generate spectroscopic time correlation functions
whose general shapes are qualitatively very similar to the
large variety of shapes (with plateaux and stretched ex-
ponentials) that are observed in the field of complex flu-
ids (supercooled liquids, glass transition, colloids, gels ...).
As such, this model is not a theory since it only pro-
vides (rather simple) formulae which allow reduction of
the spectroscopic data to the values of a few parameters,
mainly a, 〈u2

x〉 and τ0 for translation and α, 〈ϕ2〉 or 〈θ2〉
and τ0 for rotation, that is a linear or angular distance, a
mean square fluctuation amplitude and a correlation time.
The aim of any further theoretical work, out of the scope
of the model, would then be to explain the actual values of
these parameters in terms of more microscopic quantities.

A preliminary version of this model has been used
in [10] to analyse a number of spectroscopic data obtained
with liquids in their normal and supercooled phases. A
microscopic model has also been proposed in [10] to ex-
plain the values of the obtained parameters in terms of
molecular quantities. As mentioned in the introduction,
the present improved version of the model is successfully
applied to simulate fluorine NMR line shapes of polyte-
trafluorethylene [8]. It is hoped that all these results will
incite at using this model to analyse data in similar sys-
tems, in order to test its validity and range of applicability.

We are indebted to Prof. Eric. Vieil and Manoel. Manghi for
illuminating discussions and carefully reading the manuscript.
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